06 - Multi-Layer Perceptron-Networks

"Now we are talking about something that is not linear"

XOR: A Limitation of the Linear Model

Pasted image 20260210094215.png|300

Decomposing XOR

Pasted image 20260210095557.png|350

Perceptrons for OR and AND

Pasted image 20260210100015.png|600

Representing f Using OR and AND

Pasted image 20260210100323.png|250

Pasted image 20260210100636.png|400

Pasted image 20260210100959.png|500

The Multilayer Perceptron (MLP)

Pasted image 20260210101820.png|500

Universal Approximation

Pasted image 20260210101948.png|500

Theory:

The Neural Network

Pasted image 20260210102059.png|25

Zooming into a Hidden Node

Pasted image 20260210102405.png|400

layer parameters (notations)

 signals in s()d() dimensional input vector  outputs x()d()+1 dimensional output vector  weights in W()(d(1)+1)×d() dimensional matrix  weights out W(+1)(d()+1)×d(+1) dimensional matrix 

layers =0,1,2,,L
layer has "dimension" d()d()+1 nodes

W()=[w1()w2()wd()()]W={W(1),W(2),,W(L)} specifies the network 

Notes:

The Linear Signal

Input s() is a linear combination (using weights) of the outputs of the previous layer x(1).

s()=(W())Tx(1)

Pasted image 20260210102059.png|400

Pasted image 20260210104122.png|300

sj()=(wj())Tx(1) (recall the linear signal s=wTx ) s()θx()

The question: