09 - Convolutional Neural Networks

Class: CSCE-421


Notes:

Fully Connected Layer

Pasted image 20260219105125.png|500

Convolution Layer

Pasted image 20260219100750.png|500

Pasted image 20260219100813.png|500

Notes:

Pasted image 20260219101103.png|500

Notes:

Pasted image 20260219101206.png|500

Notes:

Pasted image 20260219101346.png|500

Notes:

Pasted image 20260219101455.png|500

Pasted image 20260219101509.png|500

f[x,y]g[x,y]=n1=n2=f[n1,n2]g[xn1,yn2]

Notes:

Pasted image 20260219101615.png|500

Notes:

A closer look at spatial dimensions:

Pasted image 20260219102031.png|450
Pasted image 20260219102110.png|450
Pasted image 20260219102154.png|450
Pasted image 20260219102207.png|450
Pasted image 20260219102224.png|450

Notes:

Pasted image 20260219102455.png|450
Pasted image 20260219102509.png|450
Pasted image 20260219102525.png|450
Pasted image 20260219102544.png|475
Pasted image 20260219102612.png|500

 Output size: (NF)/ stride +1 e.g. N=7,F=3: stride 1(73)/1+1=5 stride 2(73)/2+1=3 stride 3(73)/3+1=2.33

Notes:

In practice: Common to zero pad the border

Pasted image 20260219102912.png|500

Notes:

Pasted image 20260219103225.png|500

Notes:

Pasted image 20260219103346.png|500

Convolution: translation-equivariance

Pasted image 20260219103443.png|400

Pasted image 20260219103600.png|500

Convolution = local connection + weight-sharing

Pasted image 20260219103705.png|500

Notes:

Convolution: linear transform

Pasted image 20260219104430.png|500

Notes:

Receptive Field

Pasted image 20260219105052.png|500

Notes: