Bypassing Web Application Protections

There won't be any protection(s) deployed on the target side in an ideal scenario, thus not preventing automatic exploitation. Otherwise, we can expect problems when running an automated tool of any kind against such a target. Nevertheless, many mechanisms are incorporated into SQLMap, which can help us successfully bypass such protections.

Anti-CSRF Token Bypass

One of the first lines of defense against the usage of automation tools is the incorporation of anti-CSRF (i.e., Cross-Site Request Forgery) tokens into all HTTP requests, especially those generated as a result of web-form filling.

In most basic terms, each HTTP request in such a scenario should have a (valid) token value available only if the user actually visited and used the page. While the original idea was the prevention of scenarios with malicious links, where just opening these links would have undesired consequences for unaware logged-in users (e.g., open administrator pages and add a new user with predefined credentials), this security feature also inadvertently hardened the applications against the (unwanted) automation.

Nevertheless, SQLMap has options that can help in bypassing anti-CSRF protection. Namely, the most important option is --csrf-token. By specifying the token parameter name (which should already be available within the provided request data), SQLMap will automatically attempt to parse the target response content and search for fresh token values so it can use them in the next request.

Additionally, even in a case where the user does not explicitly specify the token's name via --csrf-token, if one of the provided parameters contains any of the common infixes (i.e. csrfxsrftoken), the user will be prompted whether to update it in further requests:

m4cc18@htb[/htb]$ sqlmap -u "http://www.example.com/" --data="id=1&csrf-token=WfF1szMUHhiokx9AHFply5L2xAOfjRkE" --csrf-token="csrf-token"

Output:

        ___
       __H__
 ___ ___[,]_____ ___ ___  {1.4.9}
|_ -| . [']     | .'| . |
|___|_  [)]_|_|_|__,|  _|
      |_|V...       |_|   http://sqlmap.org

[*] starting @ 22:18:01 /2020-09-18/

POST parameter 'csrf-token' appears to hold anti-CSRF token. Do you want sqlmap to automatically update it in further requests? [y/N] y

Unique Value Bypass

In some cases, the web application may only require unique values to be provided inside predefined parameters. Such a mechanism is similar to the anti-CSRF technique described above, except that there is no need to parse the web page content. So, by simply ensuring that each request has a unique value for a predefined parameter, the web application can easily prevent CSRF attempts while at the same time averting some of the automation tools. For this, the option --randomize should be used, pointing to the parameter name containing a value which should be randomized before being sent:

m4cc18@htb[/htb]$ sqlmap -u "http://www.example.com/?id=1&rp=29125" --randomize=rp --batch -v 5 | grep URI

Output:

URI: http://www.example.com:80/?id=1&rp=99954
URI: http://www.example.com:80/?id=1&rp=87216
URI: http://www.example.com:80/?id=9030&rp=36456
URI: http://www.example.com:80/?id=1.%2C%29%29%27.%28%28%2C%22&rp=16689
URI: http://www.example.com:80/?id=1%27xaFUVK%3C%27%22%3EHKtQrg&rp=40049
URI: http://www.example.com:80/?id=1%29%20AND%209368%3D6381%20AND%20%287422%3D7422&rp=95185

Calculated Parameter Bypass

Another similar mechanism is where a web application expects a proper parameter value to be calculated based on some other parameter value(s). Most often, one parameter value has to contain the message digest (e.g. h=MD5(id)) of another one. To bypass this, the option --eval should be used, where a valid Python code is being evaluated just before the request is being sent to the target:

cc18@htb[/htb]$ sqlmap -u "http://www.example.com/?id=1&h=c4ca4238a0b923820dcc509a6f75849b" --eval="import hashlib; h=hashlib.md5(id).hexdigest()" --batch -v 5 | grep URI

Output:

URI: http://www.example.com:80/?id=1&h=c4ca4238a0b923820dcc509a6f75849b
URI: http://www.example.com:80/?id=1&h=c4ca4238a0b923820dcc509a6f75849b
URI: http://www.example.com:80/?id=9061&h=4d7e0d72898ae7ea3593eb5ebf20c744
URI: http://www.example.com:80/?id=1%2C.%2C%27%22.%2C%28.%29&h=620460a56536e2d32fb2f4842ad5a08d
URI: http://www.example.com:80/?id=1%27MyipGP%3C%27%22%3EibjjSu&h=db7c815825b14d67aaa32da09b8b2d42
URI: http://www.example.com:80/?id=1%29%20AND%209978%socks4://177.39.187.70:33283ssocks4://177.39.187.70:332833D1232%20AND%20%284955%3D4955&h=02312acd4ebe69e2528382dfff7fc5cc

IP Address Concealing

In case we want to conceal our IP address, or if a certain web application has a protection mechanism that blacklists our current IP address, we can try to use a proxy or the anonymity network Tor. A proxy can be set with the option --proxy (e.g. --proxy="socks4://177.39.187.70:33283"), where we should add a working proxy.

In addition to that, if we have a list of proxies, we can provide them to SQLMap with the option --proxy-file. This way, SQLMap will go sequentially through the list, and in case of any problems (e.g., blacklisting of IP address), it will just skip from current to the next from the list. The other option is Tor network use to provide an easy to use anonymization, where our IP can appear anywhere from a large list of Tor exit nodes. When properly installed on the local machine, there should be a SOCKS4 proxy service at the local port 9050 or 9150. By using switch --tor, SQLMap will automatically try to find the local port and use it appropriately.

If we wanted to be sure that Tor is properly being used, to prevent unwanted behavior, we could use the switch --check-tor. In such cases, SQLMap will connect to the https://check.torproject.org/ and check the response for the intended result (i.e., Congratulations appears inside).

WAF Bypass

Whenever we run SQLMap, As part of the initial tests, SQLMap sends a predefined malicious looking payload using a non-existent parameter name (e.g. ?pfov=...) to test for the existence of a WAF (Web Application Firewall). There will be a substantial change in the response compared to the original in case of any protection between the user and the target. For example, if one of the most popular WAF solutions (ModSecurity) is implemented, there should be a 406 - Not Acceptable response after such a request.

In case of a positive detection, to identify the actual protection mechanism, SQLMap uses a third-party library identYwaf, containing the signatures of 80 different WAF solutions. If we wanted to skip this heuristical test altogether (i.e., to produce less noise), we can use switch --skip-waf.

User-agent Blacklisting Bypass

In case of immediate problems (e.g., HTTP error code 5XX from the start) while running SQLMap, one of the first things we should think of is the potential blacklisting of the default user-agent used by SQLMap (e.g. User-agent: sqlmap/1.4.9 (http://sqlmap.org)).

This is trivial to bypass with the switch --random-agent, which changes the default user-agent with a randomly chosen value from a large pool of values used by browsers.

Note: If some form of protection is detected during the run, we can expect problems with the target, even other security mechanisms. The main reason is the continuous development and new improvements in such protections, leaving smaller and smaller maneuver space for attackers.